

STRUCTURAL CALCULATIONS

Garage site, Gurnos

Prepared for: Merthyr Valley Homes

Project Ref: 21417

DOCUMENT CONTROL

Project:	Garage site, Gurnos	
Client:	Merthyr Valley Homes	
Vale Consultancy Ref:	21417	

Issue	Prepared by	Approved by	Date	Status
	Anastasija Solovjova	Matt Jones		
01	BEng	MEng (Hons) CEng FICE FIStructE	17.09.2025	First issue
	Structural Engineer	Managing Director		

DESIGN STATEMENT

The design has been completed in accordance with British Standards BS6399, BS5628 (Masonry), & BS 8004 (Foundation).

Information provided by the client.

Ground bearing pressure assumed to be 100kPa, to be confirmed on site by contractor or building control officer prior to works.

Refer to our sketches 21417 - SK01 for references.

All dimensions, weights, member lengths, member tables, and any other relevant design information contained within this package is for analysis, and design purposes only, for submission to building control, and must not be used for pricing or fabrication purposes. All queries are to be directed to the engineer prior to tendering, pricing or fabrication. All structural members dimensions need to be taken accurately on site by the contractor prior to fabrication.

During any initial site visits performed by our Engineer, assumptions have to be made where structural elements may have been obscured by finishes. Opening up works should be undertaken prior to fabrication or construction of any structural members to confirm that the structural layout as indicated in our proposed sketches/detailed drawings is correct.

If there are any discrepancies, the Engineer MUST be informed immediately, and prior to proceeding with construction works on site.

CDM Comments:

All temporary propping/support is to correspond to contractor's specification and details.

29 Bocam Park Old Field Road, Pencoed CF35 5LJ

Project				Job Ref.	
Garage Site, Gurnos				21417	
Section		Sheet no./rev.			
Design loadings				C)3
Calc. by	Date	Chk'd by	Date	App'd by	Date
AS	17/09/2025	MJ	17/09/2025	MJ	17/09/2025

Garage site, Gurnos

The design has been completed in accordance with British Standards BS6399, BS5628 (Masonry).

All dimensions stated in the following calculations are for design purposes only and not for use for fabrication or construction purposes. All dimensions must be checked by a competent contractor prior to fabrication or construction and any discrepancies found are to be reported to the design engineer.

Design Loadings

1. Walls

Dead Loading: Render 215mm masonry Plaster

= 0.15 kN/m² = 4.30kN/m² = 0.15 kN/m²

5.00 kN/m² Total Dead Loading

Civil & Structural Engineers 29 Bocam Park Old Field Rd, Pencoed

Project				Job no.	
Garage site, Gurnos				21417	
Calcs for		Start page no./Re	vision		
Masonry wall panel check				C)4
Calcs by AS	Calcs date 17/09/2025	Checked by MJ	Checked date 17/09/2025	Approved by MJ	Approved date 17/09/2025

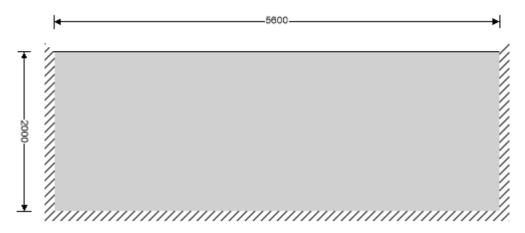
MASONRY WALL PANEL DESIGN

In accordance with BS5628-1:2005

Tedds calculation version 1.2.16

Masonry panel details

Garage wall - Unreinforced masonry wall without openings


Panel length L = 5600 mm Panel height h = 2000 mm

Panel support conditions

Right, left and bottom supported continuously

- Horizontal and vertical supports provide enhanced resistance to lateral movement

Effective panel length $L_{ef} = 0.75 \times L = 4200 \text{ mm}$ Effective panel height $h_{ef} = 2.0 \times h = 4000 \text{ mm}$

Single-leaf wall construction details

 $\begin{tabular}{lll} Wall thickness & t = 215 \ mm \\ Effective wall thickness & t_{ef} = t = 215 \ mm \\ \end{tabular}$

Masonry details

Masonry type
Compressive strength of unit

Mortar strength Class/Designation

Aggregate concrete blocks with no voids

 $p_{unit} = 7.3 \text{ N/mm}^2$

M6 / (ii)

Civil & Structural Engineers
29 Bocam Park
Old Field Rd. Pencoed

Project				Job no.	
Garage site, Gurnos				21417	
Calcs for			Start page no./Revision		
Masonry wall panel check				C)5
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
AS	17/09/2025	MJ	17/09/2025	MJ	17/09/2025

Height of masonry units $h_b = 215 \text{ mm}$ Density of masonry $\gamma = 18.0 \text{ kN/m}^3$ Least horizontal dimension of masonry units $t_{min} = 215 \text{ mm}$ Ratio of height to least horizontal dimension $h_b / t_{min} = 1.00$

From BS5628-1 Table 2c & d - Characteristic compressive strength of masonry

Characteristic compressive strength $f_k = 4.11 \text{ N/mm}^2$

From BS5628-1 Table 3 - Characteristic flexural strength of masonry

Plane of failure parallel to bed joints $f_{\text{kx_para}} = 0.17 \text{ N/mm}^2$ Plane of failure perpendicular to bed joints $f_{\text{kx_perp}} = 0.41 \text{ N/mm}^2$

Lateral loading details

Characteristic wind load on panel $W_k = 1.000 \text{ kN/m}^2$

Partial safety factors for material strength

Horizontal loading (cl 32)

Limiting dimensions (cl 32.3)

Area of panel $A_p = h \times L = \textbf{11.2} \ m^2$

Limiting area of panel $A_{max} = 1500 \times t_{ef}^2 = 69.3 \text{ m}^2$

PASS - Area of panel does not exceed limiting area of panel

Limiting panel dimension $L_{max} = 50 \times t_{ef} = 10750 \text{ mm}$

PASS - Limiting panel dimension is not exceeded

Partial safety factors for design loads

Partial safety factor for design wind load $\gamma_{FW} = 1.40$ Partial safety factor for design dead load $\gamma_{FG} = 0.90$

Design moments of resistance in panels (cl 32.4.2)

Design vertical compressive stress $g_d = \gamma_{fG} \times G_k / t = 0.00 \text{ N/mm}^2$

Enhanced flexural strength of masonry $f_{ka_para} = f_{kx_para} + \gamma_{mf} \times g_d = 0.17 \text{ N/mm}^2$

Section modulus of wall $Z = t^2 / 6 = 7704167 \text{ mm}^3/\text{m}$

Elastic design moment of resistance $M_d = f_{kx_perp} \times Z / \gamma_{mf} = 1.049 \text{ kNm/m}$

Design moment in panels (cl 32.4.2)

Orthogonal strength ratio $\mu = f_{ka_para} / f_{kx_perp} = \mathbf{0.42}$

Using yield line analysis to calculate bending moment coefficient

Bending moment coefficient $\alpha = 0.023$

Design moment in wall $M = \alpha \times W_k \times \gamma_{fW} \times L^2 = 1.000 \text{ kNm/m}$

PASS - Resistance moment exceeds design moment

Project No. 21417 Sheet No. 06

Prepared by RH
Checked by M3

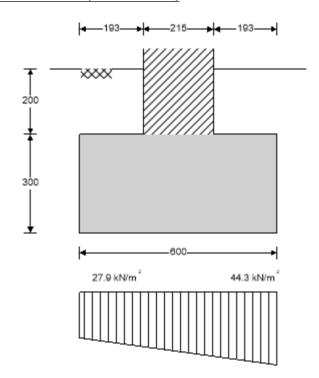
Project No. 21417

Sheet No. 06

Prepared by **RH**Checked by **M3**.

	\neg
	-
EW CLOSE, GURNOS ESTATE, MERTHYR	-
	\dashv
STRIP FOUNDATION, HAND CALCULATIONS.	\dashv
	-
ENFORMATION GIVEN:	\dashv
WALL THECKNESS, t = 215MM = 0.215M	-
WALL HEIGHT, h = 2-04	-
BRICK DENSITY, Y = 20.0KN/M3	\dashv
COPING ALLOWANCE = 0.5 KNIM	\dashv
AIR DENSITY, P = 1.25 Kg/n3, CP, nd = 1.20	\dashv
PARTIAL FACTORS: YG = 1.35, YQ = 1.5	\dashv
WIND VELOCITY, UDO - 22 MIS	\dashv
	-
DEAD LOAD	-
	-
SELF WEIGHT PUMZ:	-
	-
$\omega = \gamma \times t = 20 \times 0.215$	-
= 4.3 KN/M2	-
	\dashv
PER METRE FUN (HEIGHT 2:0M):	\dashv
	-
Wall - 4.3KN/N2 x 2.0M	-
= 8.6 KN/M	-
	-
ADD COPPING ALLOWANCE:	-
	-
Wdead = 8.6 kN + 0.5 kN	-
M M	-
= 9.1 kN	-
	-
	-
FACTORED (ULS)	-
	-
Wdead, ULS = YG X Wdead	\dashv
	-
= 1.35 x 9.1KN	-
	-
= 12.3KN	-
	-
	-
	-
3. LIVE LOAD.	-
	-
PEAK VELOCITY PRESSURE:	-
$Q = 0.5 \times P \times V^2$	-
	-
$= 0.5 \times 1.25 \times (22)^2$	-
= 302-5 = 0.303 KN/MZ	-
- 00 T/2 - 0, 202 KNIWY	

DESIGN WIND PRESSURE ON WALL:
P = 9 × Cp.net
= 0.303 KV × 1.2
MZ.
-0.364 KN/M2
HORTZONTAL LINE LOAD:
Project and the area of the
H = Pxh
= 0-364 × 2
= 0.73 KN/M
FACTORED, (ULS):
HULS = TQ XH
hous / W X H
= 1.5 × 0.73
= 11-1 KNINU


Civil & Structural Engineers

29 Bocam Park Old Field Rd, Pencoed

Project		Job no.			
Garage site, Gurnos				21417	
Calcs for				Start page no./Re	vision
Strip foundation supporting boundary wall				C)7
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
RH	17/09/2025	MJ	17/09/2025	MJ	17/09/2025

STRIP FOOTING ANALYSIS AND DESIGN (BS8110-1:1997)

Tedds calculation version 2.0.07

Strip footing details

B = **600** mm Width of strip footing h = **300** mm Depth of strip footing Depth of soil over strip footing h_{soil} = **200** mm Density of concrete $\rho_{conc} = 23.6 \text{ kN/m}^3$

Load details

Load width b = **215** mm e_P = **0** mm Load eccentricity

Soil details

 $\rho_{soil} = 20.0 \text{ kN/m}^3$ Density of soil Design shear strength $\phi' = 25.0 \text{ deg}$ Design base friction δ = **19.3** deg

Allowable bearing pressure Pbearing = 100 kN/m^2

Axial loading on strip footing

 $P_G = 15.0 \text{ kN/m}$ Dead axial load Pq = 0.0 kN/mImposed axial load Wind axial load Pw = 0.0 kN/mP = **15.0** kN/m Total axial load

Foundation loads

 $F_{Gsur} = 0.000 \text{ kN/m}^2$ Dead surcharge load $F_{Qsur} = 0.000 \text{ kN/m}^2$ Imposed surcharge load

Strip footing self weight $F_{\text{swt}} = h \times \rho_{\text{conc}} = 7.080 \text{ kN/m}^2$ Soil self weight $F_{soil} = h_{soil} \times \rho_{soil} = 4.000 \text{ kN/m}^2$

Civil & Structural Engineers

29 Bocam Park Old Field Rd, Pencoed

Project		Job no.				
Garage site, Gurnos				21417		
Calcs for		Start page no./Revision				
Strip	Strip foundation supporting boundary wall				08	
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
RH	17/09/2025	MJ	17/09/2025	MJ	17/09/2025	

Total foundation load $F = B \times (F_{Gsur} + F_{Swit} + F_{swit} + F_{soil}) = 6.6 \text{ kN/m}$

Horizontal loading on strip footing

Dead horizontal load $H_G = 0.0 \text{ kN/m}$ Imposed horizontal load $H_Q = 0.0 \text{ kN/m}$ Wind horizontal load $H_W = 1.6 \text{ kN/m}$ Total horizontal load H = 1.6 kN/m

Check stability against sliding

Resistance to sliding due to base friction

 $H_{friction} = max([P_G + (F_{Gsur} + F_{swt} + F_{soil}) \times B], 0 \text{ kN/m}) \times tan(\delta) = 7.6$

kN/m

Passive pressure coefficient $K_p = (1 + \sin(\phi')) / (1 - \sin(\phi')) = 2.464$

Passive resistance of soil $H_{pas} = 0.5 \times K_{p} \times (h^{2} + 2 \times h \times h_{soil}) \times \rho_{soil} = 5.2 \text{ kN/m}$

Total resistance to sliding $H_{res} = H_{friction} + H_{pas} = 12.8 \text{ kN/m}$

PASS - Resistance to sliding is greater than horizontal load

Check stability against overturning

Total overturning moment $Mot = M + H \times h = 0.492 \text{ kNm/m}$

Restoring moment

Foundation loading $M_{sur} = B^2 \times (F_{Gsur} + F_{swt} + F_{soil}) / 2 = 1.994 \text{ kNm/m}$

Axial loading on column $M_{axial} = (P_G) \times (B / 2 - e_P) = 4.500 \text{ kNm/m}$

Total restoring moment Mres = Msur + Maxial = **6.494** kNm/m

PASS - Overturning safety factor exceeds the minimum of 1.5

Calculate base reaction

Total base reaction T = F + P = 21.6 kN/m

Eccentricity of base reaction in x $e_T = (P \times e_P + M + H \times h) / T = 23 \text{ mm}$

Base reaction acts within middle third of base

Calculate base pressures

 $q_1 = (T / B) \times (1 - 6 \times e_T / B) = 27.880 \text{ kN/m}^2$ $q_2 = (T / B) \times (1 + 6 \times e_T / B) = 44.280 \text{ kN/m}^2$

Minimum base pressure $q_{min} = min(q_1, q_2) = \textbf{27.880 kN/m}^2$ Maximum base pressure $q_{max} = max(q_1, q_2) = \textbf{44.280 kN/m}^2$

PASS - Maximum base pressure is less than allowable bearing pressure