Skip to main content

We've saved some files called cookies on your device. These cookies are:

  • essential for the site to work
  • to help improve our website by collecting and reporting information on how you use it

We would also like to save some cookies to help tailor communications.

BETA
You're viewing an updated version of this service - your feedback will help us to improve it.

Contract Award Notice

4K Cryostat-mounted THz Scattering Near Field Optical Microscope System.

  • First published: 09 March 2017
  • Last modified: 09 March 2017

The buyer is not using this website to administer the notice.

To record your interest or obtain additional information or documents please find instructions within the Full Notice Text. (NOTE: Contract Award Notices and Prior Information Notices do not normally require a response)

Contents

Summary

OCID:
Published by:
University of Surrey
Authority ID:
AA21568
Publication date:
09 March 2017
Deadline date:
-
Notice type:
Contract Award Notice
Has documents:
No
Has SPD:
No
Has Carbon Reduction Plan:
N/A

Abstract

Full notice text

VOLUNTARY EX ANTE TRANSPARENCY NOTICE


Section I: Contracting Authority/Entity

I.1)

Name, Address and Contact Point(s)


University of Surrey

Senate House

Guildford

GU2 7XH

UK

Procurement Department

Peter Finch

+44 1483686473

p.finch@surrey.ac.uk


http://www.surrey.ac.uk


I.2)

Type of contracting Authority and Main Activity or Activities

Unchecked box
Unchecked box
Unchecked box
Unchecked box
Checked box
Unchecked box
Unchecked box
Unchecked box
Unchecked box
Unchecked box
Unchecked box
Unchecked box
Unchecked box
Unchecked box
Unchecked box
Checked box
No

Section II: Object of the Contract

II.1)

Description

II.1.1)

Title attributed to the contract by the contracting authority

4K Cryostat-mounted THz Scattering Near Field Optical Microscope System.

II.1.2(a))

Type of works contract

II.1.2(b))

Type of supplies contract

Checked box Unchecked box Unchecked box
Unchecked box Unchecked box

II.1.2(c))

Type of service contract

II.1.2)

Main site or location of works, place of delivery or performance


UKJ2

II.1.3)

This notice involves a framework agreement

No

II.1.4)

Short description of the contract or purchase(s)

The University of Surrey, acting through its Advanced Technology Institute, has been funded to establish a highly integrated facility for single ion implantation; quality assurance of silicon substrates with single impurity implants, and coherent control of the orbital state of the single silicon impurities for quantum technology applications. The primary atomic species of interest for these applications in silicon is phosphorus, but also include bismuth, selenium and others. The implanter is already under construction. A microscope is required for the single atom in silicon substrate quality assurance and for the coherent control of single silicon atom coherence.

Based on their long experience of research in this area, the Investigators responsible for delivering the program believe that for imaging single, sub-surface dopant atoms in silicon with species specificity and THz control there is only one solution that will meet the objectives: a Scanning Near-field Optical Microscope (SNOM). The microscope system design must enable tip-enhanced optical measurements by elastic light scattering-SNOM (s-SNOM), as opposed to aperture-based-SNOM (due to the resolution and signal sensitivity requirements given). The s-SNOM must be mounted in a cryogen-free cryostat with very low vibration relative to the optical bench-mounted customized laser sources.

The system is based on a Scanning Near-field Optical Microscope produced by Neaspec and a 4K optical table-integrated cryostat made by its parent company Attocube.

1. Cryostat.

The system will be based on a dry cryostat (requirement vii) which is integrated into a standard optical table (i.e. Newport) to allow the customizable laser system configurations with different THz bands described (xiii,ix). Having the cryostat actually integrated into the optical table, not sitting next to the optical table minimises the movement of the lasers and optics relative to the sample. The cryostat will provide = 2 views of optical access (xi) through room-temperature windows to the microscope focus via windows that can be changed to suit the laser wavelength. Windows are blankable for improved base temperature. The electrical access provided includes 66 DC lines (plus 6 internal ones) and 2 coaxial microwave lines for 2GHz (xi). The time required for evacuation and cooldown to 10K after a sample change will be less than 7 hours and the warm-up time from 10K will be approx. 3.5 hours (xii).

2. Atomic-Force Microscopy (AFM).

The cryostat design will provide sufficient vibration isolation for high-quality AFM measurements of the surface features with topographic RMS noise <2-3nm without degrading the optical access (v) and without degrading the near-field imaging quality in s-SNOM experiments. The AFM measurements will be done in tapping-mode configuration to provide means for efficient background suppression in s-SNOM by higher order signal demodulation. AFM read-out will be achieved by reflection of a deflection laser from the cantilever with optics outside of the cryostat.

3. Mid-infrared and THz scattering-Scanning Near-field Optical Microscope (s-SNOM).

The system performance will be guaranteed for s-SNOM measurements (x) at cryogenic conditions of T<20K (vii) (expected base temperature ca. 10K at the sample, and best efforts to achieve 5K at the sample) with existing, proven technology. A 10mW CO2 laser will be provided for mid-IR wavelengths of ca. 10µm (xii) and at this wavelength <50nm lateral resolution s-SNOM will be guaranteed at room temperature and at <20K (i,ii). Interferometric signal detection will be provided for complete background suppression (a patented pseudo-heterodyne detection technique for highest imaging sensitivity possible, as required for applications with single atom sensitivity. In addition pseudo-heterodyne detection provides the fastest imaging-speed possible (<4ms acquisition time per pixel) for fast acquisition of large field of view, megapixel images) and amplitude- & phase-resolved near-field measurements for clear optical differentiation of different species of defects (iii). 2 optical input ports will be provided for alternative sources for other wavelengths (iii,ix), The s-SNOM technology will have proven functionality for measurements in the THz spectral range (e.g. frequencies around 2THz for impurities in germanium) as well as for nanoscale resolved near-field photo-current measurements at THz frequencies.

4. Positioning stability and control.

The AFM tip holder, the sample stage and the light focusing unit (the parabolic-mirror objective with its 3D positioning unit) will be mounted on cryostat cold plate, i.e. all three at the same temperature, for optimized near-field measurement performance and minimized thermal drift effects (viii). All three will be independently adjustable for signal optimization (ii). The positioner for the objective will enable near-field signal optimization with wide adjustment range (5mm in x,y,z in parabola) with precision and position stability of 1 micron (viii). Megapixel images will be standard e.g. 10,000nm x 10,000nm at 10nm resolution (vi).

5. Sample illumination.

For the high throughput required for very high sensitivity (ii) and wide spectral range required from mid-infrared to THz (ix), the s-SNOM tip (x) illumination will be achieved by a reflective parabolic-mirror objective (with no fibre or aperture to limit the wavelength coverage or throughput). The parabolic-mirror objective will provide a patented means to measure and align its optical axis to avoid aberrations in the THz spot for ultimate throughput (ii). In addition the objective will provide a patented dual-beam access to the s-SNOM tip resulting in two independent optical beam paths for back-scatter and forward-scatter, for direct integration of THz-‘TDS’ systems for 1-3THz (ix). The system will provide visible wavelength sample inspection optics by an upright optical microscope outside of the cryostat with a demonstrated spatial resolution <2µm in both x and y in-plane axes, that does not interfere with the mid-infrared and THz optics and alignment (iv).

II.1.5)

Common Procurement Vocabulary (CPV)

38000000
38510000

II.1.6)

Contract covered by the government procurement agreement (GPA)

No

II.2)

Total final value of the contract(s)

II.2.1)

Total final value of the contract(s)

 593 100   GBP     

Section IV: Procedure

IV.1)

Type of procedure

IV.1.1)

Type of procedure

IV.2)

Award criteria

IV.2.1)

Award criteria

IV.2.2)

An electronic auction has been used

No

IV.3)

Administrative information

IV.3.1)

File reference number attributed by the contracting authority

IV.3.2)

Previous publication(s) concerning the same contract

Other previous publications

Section V: Award of contract

 

 

V.1)

Date of contract award decision:

V.2)

Numbers of offers received:

V.3)

Name and address of economic operator to whom the contract has been awarded


Neaspec

Bunsenstr. 5 D-82152 Martinsried

Munich

82152

DE

info@neaspec.com

+49 8945242060

www.neaspec.com

V.4)

Information on value of contract

 830 200 EUR 


V.5)

The contract is likely to be subcontracted

No

Short description of the value/proportion of the contract to be subcontracted

Section VI: Complementary Information

VI.1)

Contract related to a project and/or programme financed by community funds?

No



VI.2)

Additional Information

VI.3)

Procedures for appeal

VI.3.1)

Body responsible for appeal procedures


University of Surrey

Senate House Guildford

Guildford

GU2 7XH

UK

p.finch@surrey.ac.uk

+44 1483686473

www.surrey.ac.uk

Body responsible for mediation procedures










VI.3.2)

Lodging of appeals

VI.3.3)

Service from which information about the lodging of appeals may be obtained










VI.4)

Dispatch date of this Notice

 07-03-2017

Annex D1 – General procurement

Justification for the award of the contract without prior publication of a contract notice in the Official Journal of the European Union (OJEU)
Directive 2004/18/EC

Unchecked box
Unchecked box

Checked box

Checked box
Unchecked box
Unchecked box

Unchecked box

Unchecked box

Unchecked box

Unchecked box

Unchecked box

Unchecked box
Unchecked box

Unchecked box

Unchecked box

Unchecked box

The University of Surrey, acting through its Advanced Technology Institute, has been funded to establish a highly integrated facility for single ion implantation; quality assurance of silicon substrates with single impurity implants, and coherent control of the orbital state of the single silicon impurities for quantum technology applications. The primary atomic species of interest for these applications in silicon is phosphorus, but also include bismuth, selenium and others. The implanter is already under construction. A microscope is required for the single atom in silicon substrate quality assurance and for the coherent control of single silicon atom coherence. Based on their long experience of research in this area, the Investigators responsible for delivering the program believe that for imaging single, sub-surface dopant atoms in silicon with species specificity and THz control there is only one solution that will meet the objectives: a Scanning Near-field Optical Microscope (SNOM). The microscope system design must enable tip-enhanced optical measurements by elastic light scattering-SNOM (s-SNOM), as opposed to aperture-based-SNOM (due to the resolution and signal sensitivity requirements given). The s-SNOM must be mounted in a cryogen-free cryostat with very low vibration relative to the optical bench-mounted customized laser sources. The University of Surrey has held extensive discussion with a number of global vendors, and the major challenges of performing THz s-SNOM in a cryostat are that a) there is significant heat-load of the SNOM on the cryostat that adversely affects the base temperature and b) there is a significant vibration effect of the cryostat on the SNOM that adversely affects the resolution. There are other challenges of engineering to ensure e.g. low thermal drift of sample position relative to other components, etc etc. There is only one supplier, Neaspec, Munich (in partnership with its parent company Attocube, Munich), that can meet the specification described with proven, extant technology that can achieve the necessary resolution at the necessary temperature, along with the other performance specifications.

Coding

Commodity categories

ID Title Parent category
38000000 Laboratory, optical and precision equipments (excl. glasses) Technology and Equipment
38510000 Microscopes Checking and testing apparatus

Delivery locations

ID Description
100 UK - All

Alert region restrictions

The buyer has restricted the alert for this notice to suppliers based in the following regions.

ID Description
There are no alert restrictions for this notice.

About the buyer

Main contact:
p.finch@surrey.ac.uk
Admin contact:
N/a
Technical contact:
N/a
Other contact:
N/a

Further information

Date Details
No further information has been uploaded.

0800 222 9004

Lines are open 8:30am to 5pm Monday to Friday.

Rydym yn croesawu galwadau'n Gymraeg.

We welcome calls in Welsh.